COMMON PRE-BOARD EXAMINATION 2022-23
CLASS: X
SUBJECT: MATHEMATICS (041)
ANSWER KEY

Q. No	SECTION A	Marks
1	(a)2	1
2	(c) 0 and 8	1
3	(b) -10	1
4	(a) 14	1
5	(d) $(3,0)$	1
6	(c) 38	1
7	(c) $\frac{a}{\sqrt{b^{2}-a^{2}}}$	1
8	(b) 1	1
9	(a) 1	1
10	(b)Similar but not congruent	1
11	(b) 65^{0}	1
12	(a) $77 \mathrm{~m}^{2}$	1
13	(d) 1:2	1
14	(b) 52	1
15	(a) $14 \mathrm{~cm}^{2}$	1
16	(d) $\frac{4}{3} \pi a^{3}$	1
17	(d) $\frac{2}{3}$	1
18	(a) $2 \frac{1}{4}$	1
19	(a)Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).	1
20	(d)Assertion (A) is false but Reason (R) is true.	1
	SECTION B (2 marks each)	
21		(1) (1)
22	In $\triangle \mathrm{PQR}$, $\mathrm{PM} / \mathrm{QM}=4 / 4.5$	

	$\begin{aligned} & \mathrm{PN} / \mathrm{NR}=4 / 4.5 \\ & \mathrm{PM} / \mathrm{QM}=\mathrm{PN} / \mathrm{NR} \\ & \text { Hence } \mathrm{MN} \\| \text { to } \mathrm{QR}, \\ & \angle P M N=\angle P Q R(\text { Corresponding angle }) \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$
23	$\begin{aligned} & \angle O P Q=90^{\circ}-70^{\circ}=20^{\circ} \\ & \mathrm{OP}=\mathrm{OQ}(\text { radius of circle }) \\ & \angle O Q P=\angle O P Q=20^{\circ} \\ & \angle P O Q=180^{\circ}-(\angle O P Q+\angle O Q P) \\ & =180^{\circ}-\left(20^{\circ}+20^{\circ}\right) \\ & =180^{\circ}-40^{\circ}=140^{\circ} \end{aligned}$	(1/2) (1/2) (1/2) (1/2)
24	$\begin{aligned} & \text { radius }(\mathrm{r})=\text { Circumference } / 2 \pi \\ & =22 /(2 \times 22 / 7) \\ & =(22 \times 7) /(2 \times 22) \\ & =7 / 2 \mathrm{~cm} \end{aligned}$ Therefore, the area of a quadrant $=1 / 4 \times \pi r^{2}$ $\begin{aligned} & =1 / 4 \times 22 / 7 \times 7 / 2 \times 7 / 2 \\ & =\frac{77}{8} \mathrm{~cm}^{2} \end{aligned}$	$(1 / 2)$ $(1 / 2)$ (1/2) $(1 / 2)$
OR	In 5 minutes, minute hand will rotate $\frac{360^{\circ}}{60} \times 5=30^{\circ}$ Area of sector of angle $\theta=\frac{\theta}{360}$. π. r^{2} Area of sector of $30^{\circ}=\frac{30}{360} \times \frac{22}{7} \times 14 \times 14$ $=51.33 \mathrm{~cm}^{2}$	$\begin{aligned} & \hline(1 / 2) \\ & (1 / 2) \\ & \\ & (1 / 2) \\ & (1 / 2) \\ & \hline \end{aligned}$
25	$\begin{aligned} & \text { Consider LHS }=2\left(\cos ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}\right)-6\left(\sin ^{2} 45^{\circ}-\tan ^{2} 30^{\circ}\right) \\ & \begin{array}{l} =2\left[\left(\frac{1}{\sqrt{2}}\right)^{2}+(\sqrt{3})^{2}\right]-6\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-\left(\frac{1}{\sqrt{3}}\right)^{2}\right] \\ \quad=2\left[\left(\frac{1}{2}\right)+3\right]-6\left[\left(\frac{1}{2}\right)-\left(\frac{1}{3}\right)\right] \\ \quad=2\left(\frac{7}{2}\right)-6\left(\frac{1}{6}\right) \\ \quad=7-1=6=R H S \end{array} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 0R \& $$
\begin{aligned}
\text { LHS }= & \frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta} \\
= & \frac{(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}}{(\sin \theta-\cos \theta)(\sin \theta+\cos \theta)} \\
= & \frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta}{\sin ^{2} \theta-\cos ^{2} \theta} \\
= & \frac{1+1}{\sin ^{2} \theta-\cos ^{2} \theta} \\
= & \frac{2}{\sin ^{2} \theta-\cos ^{2} \theta} \\
& =\frac{2}{\left(1-\cos ^{2} \theta\right)-\cos \theta}=\frac{2}{1-2 \cos ^{2} \theta}
\end{aligned}
$$ \& $(1 / 2)$
$(1 / 2)$
$(1 / 2)$

$(1 / 2)$ \\
\hline \& SECTION C (3 marks each) \& \\

\hline 26 \& | Let $(3-\sqrt{5})$ be a rational number. |
| :--- |
| $(3-\sqrt{5})=\mathrm{x}$, where $\mathrm{x}=\frac{\mathrm{p}}{\mathrm{q}}, \mathrm{p}$ and q are coprime and $\mathrm{q} \neq 0$. $\therefore \sqrt{5}=3-\mathrm{x}$ |
| $\because \mathrm{x}$ is an integer, $3-\mathrm{x}$ is an integer |
| Hence $\sqrt{5}$ is rational which is not possible. |
| Hence our assumption is wrong. |
| $(3-\sqrt{5})$ is irrational. | \& | (1/2) |
| :--- |
| (1/2) |
| (1/2) |
| (1/2) |
| (1/2) |
| (1/2) | \\

\hline 27 \& | When roots are given, quadratic polynomial is of the form $x^{2}-(\alpha+\beta) x+$ $\alpha \beta$ |
| :--- |
| Also $\alpha+\beta=\frac{5}{2}$ and |
| $\alpha \cdot \beta=\frac{7}{2}$ |
| Here roots are 2α and 2β |
| \therefore the req: quadratic polynomial is $\mathrm{k}\left\{\mathrm{x}^{2}-(2 \alpha+2 \beta) \mathrm{x}+2 \alpha .2 \beta\right\}$ |
| $=\mathrm{k}\left\{\mathrm{x}^{2}-2(\alpha+\beta) \mathrm{x}+4 \alpha \beta\right\}$ $=k\left(x^{2}-5 x+14\right)$ | \& | (1/2) |
| :--- |
| (1/2) |
| (1/2) |
| (1/2) |
| (1/2) |
| (1/2) | \\

\hline
\end{tabular}

	$\begin{aligned} & \left.\angle P A B=180^{\circ}-135^{\circ}=45^{\circ} \text { (Supplementary angles }\right) \\ & \angle A B P=\angle P A B=45^{\circ}(\text { Opposite angles of equal sides }) \\ & \angle A P B=180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ} . \end{aligned}$ So $\triangle \mathrm{ABP}$ is an isosceles right angled triangle Now in $\triangle A B P$ we have $\begin{aligned} & \sin 45=\frac{A P}{A B} \\ & \text { ie } \frac{1}{\sqrt{2}}=\frac{4}{A B} \\ & \therefore A B=4 \sqrt{2} \mathrm{~cm} \end{aligned}$	$(1 / 2)$ (1/2) (1/2) (1/2)		
OR	Given. Let $A B$ be a diameter of a given circle, and let $P Q$ and $R S$ be the tangent lines drawn to the circle at points A and B respectively. To prove. $P Q \\| R S$ Proof. $A B \perp P Q$ and $A B \perp R S$ $\begin{array}{ll} \Rightarrow & \angle P A B=90^{\circ} \\ \text { and } & \angle A B S=90^{\circ} \\ \Rightarrow & \angle P A B=\angle A B S \\ \Rightarrow & P Q \\| R S \quad[\because \angle P A B \text { and } \angle A B S \text { are alternate angles }] \end{array}$	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2)		
31	Since, Jacks, Queens and Kings of red colour are removed. Then, Total number of possible outcomes $=52-6=46$ (i) Let E_{1} be the event of getting a black king \therefore Favourable outcomes $=$ King of spade and King of club.			

	No. of favourable outcomes $=2$ $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2}{46}=\frac{1}{23}$ (ii) LetE $_{2}$ be the event of getting a card of red colour \therefore Favourable outcomes $=10$ cards of heart and 10 cards of diamond. No. of favourable outcomes $=20$ $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{20}{46}=\frac{10}{23}$ (iii) Let E_{3} be the event of getting a card of black colour \therefore Favourable outcomes $=13$ cards of spade and 13 cards of club. No. of favourable outcomes $=26$ $\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{26}{46}=\frac{13}{23}$	(1/2) (1/2) (1/2) (1/2) (1/2)
32	Equation is $x^{2}+p x+16=0$ where, $a=1, b=p, c=16$ $\left\{\begin{array}{l} b^{2}-4 a c=0 \\ (p)^{2}-4(1)(16)=0 \\ p^{2}-64=0 \\ p=\sqrt{64} \\ p= \pm 8 \end{array}\right.$ Solution is $x=\frac{-b \pm \sqrt{D}}{2 a}$	(1/2) (1/2) (1/2) (1/2) $(1 / 2)+(1 / 2)$

	When $\mathrm{p}=8, x^{2}+8 x+16=0$ The solution is, $x=\frac{-(8) \pm \sqrt{0}}{2(1)}, x=\frac{-8}{2}, x=-4$ When $\mathrm{p}=-8, x^{2}-8 x+16=0$ The solution is, $x=\frac{-(-8) \pm \sqrt{0}}{2(1)}, x=\frac{8}{2}, x=4$ The roots of the equation is $4,-4$.	(1/2) (1/2) (1/2) (1/2)
OR	Let the time taken by pipe of larger diameter be x hours and time taken by the pipe with smaller diameter be $\mathrm{x}+10$ hours. Now, $\frac{4}{x}+\frac{9}{x+10}=\frac{1}{2} \ldots \ldots$. (i) $\begin{equation*} \Rightarrow x^{2}-16 x-80=0 . \tag{ii} \end{equation*}$ Solve eq (ii)..... $(x-20)(x+4)=0$ $x=20, x=-4$ The value of x can not be -ve so that the value of $\mathrm{x}=20$. So that the larger diameter pipe fill the tank in 20 hours and smaller diameter pipe fill the tank in 30 hour	$(1 / 2)$ (1) (1) $(1 / 2)+(1 / 2)$ (1/2) $(1 / 2)+(1 / 2)$
33	Original volume of water in the cylindrical tub $=$ Volume of Cylinder $=\pi r^{2} h$ $\begin{aligned} & =\frac{2}{7} \times 5^{2} \times 1.4 \\ & =22 \times 25 \times 1.4 \\ & =770 \mathrm{~cm}^{3} \end{aligned}$	(1/2) (1/2) (1/2)

	Given that Radius of hemisphere, $\mathrm{R}=2.1 \mathrm{~cm}$ and height of cone, $\mathrm{h}=4 \mathrm{~cm}$ Volume of solid immersed $=$ Volume of cone + Volume of hemisphere $\begin{aligned} & \quad=\frac{1}{3} \pi R^{2} h+\frac{2}{3} \pi R^{3} \\ & =\frac{1}{3} \pi R^{2}(h+2 R) \\ & =\frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1(4+2 \times 2.1) \\ & =\frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 8.2 \\ & =37.884 \mathrm{~cm} \text { cube } \end{aligned}$ \therefore Volume of water displaced (removed) $=37.884 \mathrm{~cm}$ cube Hence, the required volume of the water left in the cylindrical tub $=770-37.884$ $=732.116 \mathrm{~cm}^{3}$	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2)
34	Given, to prove, figure, construction Correct proof In $\triangle \mathrm{ABD}, \frac{\mathrm{DP}}{\mathrm{PA}}=\frac{\mathrm{DM}}{\mathrm{MB}}$ In $\triangle \mathrm{BDC}, \frac{\mathrm{DM}}{\mathrm{MB}}=\frac{C Q}{\mathrm{QB}}$ from (i)and (ii) $\frac{D P}{P A}=\frac{C Q}{Q B}$	(1/2) (1/2) (2) (1/2) (1/2) (1/2) (1/2)

	Hence a line through the point of intersection of the diagonals and parallel to one of the parallel sides of the trapezium divides the non-parallel sides in the same ratio.	
OR	Given, To prove and figure	(1/2)
	In $\triangle \mathrm{QBC}$ and $\triangle \mathrm{PAC}$,	
	$\angle B C Q=\angle A C P$	(1/2)
	$\angle Q B C=\angle P A C$	
	$\therefore \triangle Q B C \sim \triangle P A C$	(1/2)
	$\frac{B C}{A C}=\frac{Q B}{P A}$	(1/2)
	$\frac{b}{a+b}=\frac{z}{x}$	
	$\therefore \frac{b}{z}=\frac{a+b}{x}--------- \text { (i) }$	(1/2)
	Similarly, $\triangle A B Q \sim \triangle A C R$	
	$\frac{A B}{A C}=\frac{B Q}{C R}$	(1/2)
	$\frac{a}{a+b}=\frac{z}{y}$	
	$a_{2} a+b$	(1/2)
	$\therefore \bar{z}=\frac{}{y}$	(1/2)
	$(i)+(i i) \Rightarrow \frac{b}{z}+\frac{a}{z}=\frac{a+b}{x}+\frac{a+b}{y}$	
		(1/2)
	$\frac{a+b}{z}=(a+b)\left(\frac{1}{x}+\frac{1}{y}\right)$	
		(1/2)

	$=\sqrt{17}$	
	$\text { (iii) } \begin{aligned} & D(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\ & =\left(\frac{4 \times-1+3 \times-2}{4+3}, \frac{4 \times-2+3 \times 2}{4+3}\right) \\ & =\left(\frac{-10}{7}, \frac{-2}{7}\right) \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2)+(1 / 2) \\ & (1 / 2) \end{aligned}$
OR	Distance $A O=2 \sqrt{2}$, Distance $A B=\sqrt{ } 17$ Distance $O B=\sqrt{(0--1)^{2}+(0--2)^{2}}$ $=\sqrt{5}$ Since $A B \neq A O \neq O B$, its a scalene triangle.	(1/2) (1/2) (1/2) (1/2)
37	(i) $\mathrm{a}=1500$ and d $=200$	$(1 / 2)+(1 / 2)$
	(ii) amount paid in the $\begin{aligned} 15^{\text {th }} \text { installment, } \mathrm{a}_{15} & =1500+14 \times 200 \\ & =₹ 4300\end{aligned}$	$\begin{array}{\|l\|} \hline(1 / 2) \\ (1 / 2) \end{array}$
	$\text { (iii) } \begin{aligned} & 1500+(\mathrm{n}-1) 200=5500 \\ & \\ & (\mathrm{n}-1) 200=4000 \\ & \\ & \mathrm{n}=21 \end{aligned}$	$\begin{aligned} & \hline(1) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$
OR	$\begin{aligned} & 2 k+1-11=(3 k-1)-(2 k+1) \\ & 2 k-10=k-2 \\ & k=8 \end{aligned}$	$\begin{aligned} & \hline(1) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$
38	(i) Let the distance of two cars from the tower be x and y $\tan 30=\frac{3}{x} \Rightarrow x=3 \sqrt{3}$	(1/2)

	$\tan 60=\frac{3}{y} \Rightarrow y=\sqrt{3}$ Distance between the cars $=4 \sqrt{3} \mathrm{~m}$	(1/2)
	(ii) Angle of depression will increase as the car approaches the building.	(1)
	(iii) Given $\frac{\text { opposite }}{\text { adjacent }}=\frac{\sqrt{ } 3}{1}$ $\Rightarrow \tan \theta=\sqrt{3}$ hence the angle of elevation of the sun $=60^{\circ}$	(1/2) (1) $(1 / 2)$
OR	If both height and base are increased by 10%, $\begin{gathered} \tan \alpha=\frac{h+\frac{1}{10} h}{b+\frac{1}{10} b} \\ \tan \alpha=\frac{h}{b} \end{gathered}$ ie $\theta=\alpha$ So angle of elevation remains unchanged.	(1/2) (1/2) (1/2) (1/2)

