Wilson may

COMMON PRE-BOARD EXAMINATION 2022-23

CLASS: X

SUBJECT: MATHEMATICS (041)

ANSWER KEY

Q. No	SECTION A	Marks
1	(a)2	1
2	(c) 0 and 8	1
3	(b) - 10	1
4	(a)14	1
5	(d) (3,0)	1
6	(c) 38	1
7	$(c) \frac{a}{\sqrt{b^2 - a^2}}$	1
8	(b)1	1
9	(a)1	1
10	(b)Similar but not congruent	1
11	(b)65 ⁰	1
12	$(a)77 \text{ m}^2$	1
13	(d)1:2	1
14	(b)52	1
15	$(a)14 \text{ cm}^2$	1
16	$(d)\frac{4}{3}\pi a^3$	1
17	$(d)^{\frac{2}{3}}$	1
18	$(a)2\frac{1}{4}$	1
19	(a)Both Assertion (A) and Reason (R) are true, and Reason (R) is the	1
	correct explanation of Assertion (A).	
20	(d)Assertion (A) is false but Reason (R) is true.	1
	SECTION B (2 marks each)	
21	x + y = 2125(1mark)	(1)
	3x + 4y = 6400(1mark)	(1)
22	In ΔPQR,	
	PM/QM = 4/4.5	

PN/NR = 4/4.5 PM/QM = PN/NR Hence MN to QR, $\angle PMN = \angle PQR$ (Corresponding angle) (1) 23 $\angle OPQ = 90^{\circ} - 70^{\circ} = 20^{\circ}$ $OP = OQ$ (radius of circle) $\angle OQP = \angle OPQ = 20^{\circ}$ $\angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP)$ $= 180^{\circ} - (20^{\circ} + 20^{\circ})$ $= 180^{\circ} - 40^{\circ} = 140^{\circ}$ (½) 24 radius (r) = Circumference/2 π $= 22/(2 \times 22/7)$
Hence MN to QR, $\angle PMN = \angle PQR$ (Corresponding angle) (1) 23 $\angle OPQ = 90^{\circ} - 70^{\circ} = 20^{\circ}$ (½) OP=OQ (radius of circle) $\angle OQP = \angle OPQ = 20^{\circ}$ (½) $\angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP)$ $= 180^{\circ} - (20^{\circ} + 20^{\circ})$ $= 180^{\circ} - 40^{\circ} = 140^{\circ}$ (½) 24 radius (r) = Circumference/ 2π (½)
$ \angle PMN = \angle PQR \text{(Corresponding angle)} \tag{1} $ 23 \(\angle OPQ = 90^{\circ} - 70^{\circ} = 20^{\circ} \) \(OP=OQ \text{ (radius of circle)} \) \(\angle OQP = \angle OPQ = 20^{\circ} \) \(\angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP) \) \(= 180^{\circ} - (20^{\circ} + 20^{\circ}) \) \(= 180^{\circ} - 40^{\circ} = 140^{\circ} \) \(24 \) \(\text{radius (r)} = \text{Circumference}/2\pi \) \(\text{(1/2)} \)
23 $\angle OPQ = 90^{\circ} - 70^{\circ} = 20^{\circ}$ (½) OP=OQ (radius of circle) $\angle OQP = \angle OPQ = 20^{\circ}$ (½) $\angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP)$ $= 180^{\circ} - (20^{\circ} + 20^{\circ})$ $= 180^{\circ} - 40^{\circ} = 140^{\circ}$ (½) 24 $\text{radius (r)} = \text{Circumference}/2\pi$ (½)
OP=OQ (radius of circle) $ \angle OQP = \angle OPQ = 20^{\circ} $ $ \angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP) $ $ = 180^{\circ} - (20^{\circ} + 20^{\circ}) $ $ = 180^{\circ} - 40^{\circ} = 140^{\circ} $ (½) 24 radius (r) = Circumference/ 2π (½)
$ \angle OQP = \angle OPQ = 20^{\circ} \angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP) = 180^{\circ} - (20^{\circ} + 20^{\circ}) = 180^{\circ} - 40^{\circ} = 140^{\circ} $ (1/2) 24 radius (r) = Circumference/2 π (1/2)
$ \angle POQ = 180^{\circ} - (\angle OPQ + \angle OQP) = 180^{\circ} - (20^{\circ} + 20^{\circ}) = 180^{\circ} - 40^{\circ} = 140^{\circ} $ (1/2) (1/2) 24 radius (r) = Circumference/2 π
$= 180^{\circ} - (20^{\circ} + 20^{\circ})$ $= 180^{\circ} - 40^{\circ} = 140^{\circ}$ $(\frac{1}{2})$ $(\frac{1}{2})$ 24 radius (r) = Circumference/2 π ($\frac{1}{2}$)
$= 180^{\circ} - 40^{\circ} = 140^{\circ}$ (1/2) (1/2) 24 radius (r) = Circumference/ 2π (1/2)
radius (r) = Circumference/ 2π (½)
$= 22/(2 \times 22/7)$
$=(22\times7)/(2\times22)$
= 7/2 cm
Therefore, the area of a quadrant = $1/4 \times \pi r^2$
$= 1/4 \times 22/7 \times 7/2 \times 7/2 \tag{1/2}$
$=\frac{77}{8}\text{cm}^2$
OR In 5 minutes, minute hand will rotate $\frac{360^{\circ}}{60} \times 5 = 30^{\circ}$ (1/2)
Area of sector of angle $\theta = \frac{\theta}{360}$. π . r^2 60 (1/2)
Area of sector of $30^{\circ} = \frac{30}{360} \times \frac{22}{7} \times 14 \times 14$
51 02 2
(12)
Consider LHS=2 $(cos^2 45^\circ + tan^2 60^\circ) - 6 (sin^2 45^\circ - tan^2 30^\circ)$
$=2\left[\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\sqrt{3}\right)^{2}\right]-6\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-\left(\frac{1}{\sqrt{3}}\right)^{2}\right] \tag{1/2}$
$=2\left[\left(\frac{1}{2}\right)+3\right]-6\left[\left(\frac{1}{2}\right)-\left(\frac{1}{3}\right)\right] \tag{1/2}$
$=2\left(\frac{7}{2}\right)-6\left(\frac{1}{6}\right)$
= 7 - 1 = 6 = RHS (1/2)

ΔD	1 110	
0R	LHS = $\sin \theta + \cos \theta$ $\sin \theta - \cos \theta$	
	$\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta}$	
		(1/2)
	$(\sin \theta - \cos \theta)(\sin \theta + \cos \theta)$ $\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta + \sin^2 \theta + \cos^2 \theta - 2\sin \theta \cos \theta$	
		(1/2)
	$\sin^2 \theta - \cos^2 \theta$	
	$=\frac{1}{\sin^2\theta-\cos^2\theta}$	
	_ 2	(1/2)
	$=\frac{\sin^2\theta-\cos^2\theta}{\sin^2\theta-\cos^2\theta}$	(,2)
	2 2	
	$=\frac{1}{(1-\cos^2\theta)-\cos\theta}=\frac{1}{1-2\cos^2\theta}$	(1/2)
	SECTION C (3 marks each)	
26	Let $(3 - \sqrt{5})$ be a rational number.	(1/2)
		(1/2)
	$(3 - \sqrt{5}) = x$, where $x = \frac{p}{q}$, p and q are coprime and $q \neq 0$.	
	$\therefore \sqrt{5} = 3 - x$	(1/2)
	\therefore x is an integer, 3 – x is an integer	(1/2)
	Hence $\sqrt{5}$ is rational which is not possible.	(1/2)
	Hence our assumption is wrong.	(1/2)
	$(3 - \sqrt{5})$ is irrational.	
27	When roots are given, quadratic polynomial is of the form $x^2 - (\alpha + \beta)x +$	(1/2)
	$\alpha \beta$	
		(1/2)
	5 ,	
	Also $\alpha + \beta = \frac{5}{2}$ and	(1/2)
	7	
	$\alpha.\beta = \frac{7}{2}$	
	Here roots are 2α and 2β	(1/2)
	: the req: quadratic polynomial is $k\{x^2 - (2\alpha + 2\beta)x + 2\alpha. 2\beta\}$	$\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$
	$= k\{x^2 - 2(\alpha + \beta)x + 4\alpha\beta\}$	
		(1/2)
	$=k(x^2-5x+14)$	
L	ı · · · · · · · · · · · · · · · · · · ·	1

28	2x + 3y = 2 x	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2)
OR	Shading of the triangular region bounded by these lines and $x - axis$ let the cost of one pencil be $\forall x$ and the cost of one pencil be $\forall y$ $5x + 7y = 195 \dots (i)$ $7x + 5y = 153 \dots (ii)$ Adding (i) and (ii), $12x + 12y = 348 \Rightarrow x + y = 29 \dots (iii)$ Subtracting (i) from (ii), $2x - 2y = -42 \Rightarrow x - y = -21 \dots (iv)$ Solving we get, the cost of each pencil is $\forall 4$ and the cost of each pen is $\forall 25$	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2)
29	LHS = $\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A}$ = $\frac{\cos A}{1 - \tan A} + \frac{\sin A \tan A}{\tan A - 1}$ = $\frac{\cos A}{1 - \tan A} - \frac{\sin A \tan A}{1 - \tan A}$ = $\frac{\cos A - \sin A \tan A}{1 - \tan A}$ = $\frac{\cos^2 A - \sin^2 A}{\cos A - \sin^2 A}$ = $\frac{(\cos A - \sin A)(\cos A + \sin A)}{\cos A}$ = $\frac{(\cos A - \sin A)(\cos A + \sin A)}{\cos A - \sin A}$ = $\cos A + \sin A$	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2)
30	AP = PB (Tangents from external point) AP = 4 cm	(1/2)

	$\angle PAB = 180^{\circ} - 135^{\circ} = 45^{\circ}$ (Supplementary angles)	(1/2)
	$\angle ABP = \angle PAB = 45^{\circ}$ (Opposite angles of equal sides)	4.0
	$\angle APB = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$.	(1/2)
	So \triangle ABP is an isosceles right angled triangle	
	Now in $\triangle ABP$ we have	
	$\sin 45 = \frac{AP}{AB}$	(1/2)
	$ie \frac{1}{\sqrt{2}} = \frac{4}{AB}$	(1/2)
	$\therefore AB = 4\sqrt{2}cm$	(1/2)
OR	Given. Let AB be a diameter of a given circle, and let PQ and RS be the tangent lines drawn to the circle at points A and B respectively.	(1/2)
	R B S	
		(1/2)
	PAQ	
	To prove. $PQ \parallel RS$	(1/2)
	Proof. $AB \perp PQ$ and $AB \perp RS$	
	\Rightarrow $\angle PAB = 90^{\circ}$	(1/2)
	and $\angle ABS = 90^{\circ}$	
	\Rightarrow $\angle PAB = \angle ABS$	(1/2)
	\Rightarrow $PQ \parallel RS$ [:: $\angle PAB$ and $\angle ABS$ are alternate angles]	(1/2)
31	Since, Jacks, Queens and Kings of red colour are removed. Then,	
	Total number of possible outcomes = 52–6=46	
	(i) Let E ₁ be the event of getting a black king	
	∴ Favourable outcomes = King of spade and King of club.	
<u></u>		

	No. of favourable outcomes = 2	(1/2)
	$P(E_1) = \frac{2}{46} = \frac{1}{23}$	(1/2)
	(ii) LetE ₂ be the event of getting a card of red colour	
	∴ Favourable outcomes = 10 cards of heart and 10 cards of diamond.	
	No. of favourable outcomes = 20	(1/2)
	$P(E_2) = \frac{20}{46} = \frac{10}{23}$	(1/2)
	(iii) Let E ₃ be the event of getting a card of black colour	
	∴ Favourable outcomes = 13 cards of spade and 13 cards of club.	
	No. of favourable outcomes = 26	(1/2)
	$P(E_3) = \frac{26}{46} = \frac{13}{23}$ Equation is $x^2 + px + 16 = 0$	(1/2)
32	Equation is $x^2 + px + 16 = 0$	
	where, a=1, b=p, c=16	(1/2)
	$b^2 - 4ac = 0$	(1/2)
	$(p)^2 - 4(1)(16) = 0$	(1/2)
	$p^2 - 64 = 0$ $p = \sqrt{64}$	(1/2)
	$p = \sqrt{64}$	
	$p = \pm 8$	(1/2)+(1/2)
	Solution is $x = \frac{-b \pm \sqrt{D}}{2a}$	

	When p=8, $x^2 + 8x + 16 = 0$	
	The solution is,	(1/2)
	$x = \frac{-(8) \pm \sqrt{0}}{2(1)}$, $x = \frac{-8}{2}$, $x = -4$	
	When p=-8, $x^2 - 8x + 16 = 0$	(1/2)
	The solution is,	(1/2)
	$x = \frac{-(-8) \pm \sqrt{0}}{2(1)}$, $x = \frac{8}{2}$, $x = 4$	
	The roots of the equation is 4, -4.	(1/2)
OD		(1/)
OR	Let the time taken by pipe of larger diameter be x hours and time taken by the	(1/2)
	pipe with smaller diameter be $x + 10$ hours.	(1)
	Now, $\frac{4}{x} + \frac{9}{x+10} = \frac{1}{2}$ (i)	(1) (1)
	$\Rightarrow x^2 - 16x - 80 = 0$ (ii)	` ´
	Solve eq (ii) $(x - 20)(x + 4) = 0$	$(\frac{1}{2}) + (\frac{1}{2})$
	x = 20, x = -4.	(1/2)
	The value of x can not be -ve so that the value of $x=20$.	$(\frac{1}{2})$ $(\frac{1}{2})$ + $(\frac{1}{2})$
	So that the larger diameter pipe fill the tank in 20 hours and smaller diameter pipe fill the tank in 30 hour	(72) + (72)
33	Original volume of water in the cylindrical tub	
	= Volume of Cylinder = $\pi r^2 h$	(1/2)
	$=\frac{2}{7}\times5^2\times1.4$	(1/2)
	$=22\times25\times1.4$	(1/)
	$=770 cm^3$	(1/2)

		1
	Given that Radius of hemisphere, R=2.1 cm	(1/2)
	and height of cone, h=4 cm	
	Volume of solid immersed = Volume of cone+ Volume of hemisphere	(1/2)
	$= \frac{1}{3}\pi R^2 h + \frac{2}{3}\pi R^3$	(16)
	$=\frac{1}{3}\pi R^2(h+2R)$	(1/2)
	$= \frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1(4 + 2 \times 2.1)$	(1/2)
	$= \frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 8.2$ = 37.884 cm cube	(1/2)
	∴ Volume of water displaced (removed) = 37.884 cm cube	(1/2)
	Hence, the required volume of the water left in the cylindrical	
	tub =770-37.884	(1/2)
	$=732.116 \text{ cm}^3$	
34	Given, to prove,	(1/2)
	figure, construction	(1/2)
	Correct proof	(2)
	P Q B	(1/2)
	In $\triangle ABD$, $\frac{DP}{PA} = \frac{DM}{MB}$ (i)	(1/2)
	In $\triangle BDC$, $\frac{DM}{MB} = \frac{CQ}{QB}$ (ii)	(1/2)
	from (i) and (ii) $\frac{DP}{PA} = \frac{CQ}{QB}$	(1/2)

	Hence a line through the point of intersection of the diagonals and parallel to one of the parallel sides of the trapezium divides the non-parallel sides in the same ratio.	
OR	Given, To prove and figure In $\triangle QBC$ and $\triangle PAC$,	(1/2)
	$\angle BCQ = \angle ACP$ $\angle QBC = \angle PAC$	(1/2)
	$\therefore \Delta QBC \sim \Delta PAC$	(1/2)
	$\frac{BC}{AC} = \frac{QB}{PA}$	(1/2)
	$\frac{b}{a+b} = \frac{z}{x}$ $\therefore \frac{b}{z} = \frac{a+b}{x} (i)$	(1/2)
	Similarly, $\triangle ABQ \sim \triangle ACR$ $\frac{AB}{AC} = \frac{BQ}{CR}$ $\frac{a}{AC} = \frac{Z}{CR}$	(1/2)
	$\frac{a+b}{a+b} = \frac{1}{y}$ $\therefore \frac{a}{z} = \frac{a+b}{y}$ (ii)	(½) (½)
	$(i) + (ii) \Longrightarrow \frac{b}{z} + \frac{a}{z} = \frac{a+b}{x} + \frac{a+b}{y}$ $\frac{a+b}{z} = (a+b)(\frac{1}{x} + \frac{1}{y})$	(1/2)
		(1/2)

	1 1	1			
	$\Rightarrow \frac{1}{Z} = \frac{1}{\chi} +$	\overline{y}			
35	Class	Frequency	Cumulative		
	interval		frequency		
	0-10	5	5		40
	10-20	x	5+ <i>x</i>		(1/2)
	20 – 30	6	11+x		
	30-40	у	11+ <i>x</i> + <i>y</i>		
	40 – 50	6	17+ <i>x</i> + <i>y</i>		
	50-60	5	22+x+y		
	Total	40	22+x+y		
	*** 1	10		1	(1/2)
	We have $x+$	-y = 18	(1)		(72)
	Now Media	$n = l + \frac{\frac{n}{2} - cf}{f} \times$	h.		
		f			
	Here $l = 30$	$0, h = 10, \frac{n}{2} =$	20, $cf = 11 + 2$	x, f = y	
	Now we have $31 = 30 + \frac{(20-11-x)}{y} \times 10$			(½)x5=2	
			У		1/2
	$\Rightarrow 10x + y$	y = 90	(ii)		
	Solving (i) a	and (ii) we get	y = 8 and y	= 10	(1/2)
	Bolving (i) t	and (ii) we get	n Gunu y	10	(1/2)+(1/2)
			SECTION E	<u> </u>	
	3 case study	questions of 4	marks each		
36		istance OA =		$\frac{1}{2} + (0-2)^2$	(1/2)
			v ·		(1/2)
		: 2√2			
	(ii) D	istance AB =	$=\sqrt{(-2-1)^2}$	$(1)^2 + (-2-2)^2$	$\begin{pmatrix} 1/2 \end{pmatrix}$
					(1/2)

	$=\sqrt{17}$	
	(iii) $D(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	(1/2)
	$= \left(\frac{4 \times -1 + 3 \times -2}{4 + 3}, \frac{4 \times -2 + 3 \times 2}{4 + 3}\right)$	(1/2)+(1/2)
	$=(\frac{-10}{7},\frac{-2}{7})$	(1/2)
OR	Distance AO = $2\sqrt{2}$, Distance AB = $\sqrt{17}$	(1/2)
	Distance $OB = \sqrt{(0-1)^2 + (0-2)^2}$	(½) (½)
	$= \sqrt{5}$ Since AB \neq AO \neq OB, its a scalene triangle.	(1/2)
37	(i) $a = 1500$ and $d = 200$	(1/2) + (1/2)
	(ii) amount paid in the 15^{th} installment, $a_{15} = 1500 + 14x200$	(1/2)
	=₹4300	(1/2)
	(iii) $1500 + (n-1)200 = 5500$	(1)
	(n-1) 200 = 4000 $n = 21$	(½) (½)
OR	2k+1-11=(3k-1)-(2k+1)	(1)
	2k - 10 = k - 2	(1/2) $(1/2)$
	k = 8	
38	(i) Let the distance of two cars from the tower be x and y	
	$\tan 30 = \frac{3}{x} \Rightarrow x = 3\sqrt{3}$	(1/2)

		$tan60 = \frac{3}{y} \Rightarrow y = \sqrt{3}$	
		Distance between the cars = $4\sqrt{3}m$	(1/2)
	(ii)	Angle of depression will increase as the car approaches the building.	(1)
	(iii)	Given $\frac{opposite}{adjacent} = \frac{\sqrt{3}}{1}$	(1/2)
		$\Rightarrow \tan \theta = \sqrt{3}$	(1)
		hence the angle of elevation of the $sun = 60^{\circ}$	(1/2)
OR	If both he	eight and base are increased by 10%,	
		$\tan \alpha = \frac{h + \frac{1}{10}h}{b + \frac{1}{10}b}$	(1/2)
		$\tan \alpha = \frac{h}{b}$	(1/2)
	ie $\theta = \alpha$		(1/2)
	So angle	of elevation remains unchanged.	(1/2)
1	1		1